

FFAG'14 Workshop Summary

Suzie Sheehy September 22-26th, Brookhaven National Lab

- 1. Dec1999, FFAG'99 KEK
- 2. Mar 2000, PRISM muon source, TRIUMF
- 3. July 2000, FFAGs for Muons- CERN
- 4. Oct. 2000, FFAG'00 KEK
- 5. Feb 2002, FFAG'02 KEK
- 6. Sept. 2002, FFAG LBL
- 7. July 2003, FFAG'03 KEK
- 8. Sept 2003, FFAG BNL
- 9. Mar. 2004, FFAG TRIUMF
- 10.Oct. 2004, FFAG'04 KEK
- 11. Apr. 2005, FFAG FNAL
- 12. Dec. 2005, FFAG'05 KURRI
- 13. May '06, FFAG BNL
- 14. Nov. '06, FFAG'06 KURRI
- 15. April '07, FFAG LPSC, Grenoble
- 16. Nov '07, FFAG'07 KURRI
- 17. Sept. '08, FFAG'08 Manchester
- 18. 2008, FFAG'08 KURRI
- 19. 2009, FFAG'09 FNAL
- 20. 2009, FFAG'09J KURRI
- 21. 2010, FFAG'10 KURRI
- 22. 2011, FFAG'11 Oxford
- 23. 2012, FFAG'12 Osaka
- 24. 2013, FFAG'13 TRIUMF

25. 2014, FFAG'14 - BNL

nb. all plots/figures throughout this talk are from the Indico versions of speakers slides

The workshop in numbers*:

Attendees: 42 (+ a few others?)

Talks: 46

Percentage of mac users: 97%

Groundhogs observed: 3

Visitors scared by ticks at BNL: 14

Amazing sunsets: >2

Coffee consumed: 3,654,000 L

Delicious foodstuffs consumed: 56,781

*some numbers may be totally made up

1. Operating machines: Status, Results

Yoshihiro Ishi, KURRI R&D status

Challenges:

- Large vacuum chamber, need for new diagnostics
- Simulation vs experiment requires all details of system

Nobuo Ikeda Kyushu R&D

Challenges posed for FFAGs: Can we use an FFAG as a post-acceleration AMS device?

1. Operating machines: Status, Results

Shinji Machida EMMA

Many lessons from EMMA:

Need to consider injection/extraction earlier in design Diagnostics are not the same as synchrotron

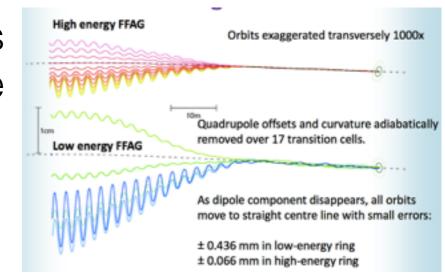
Discussion points:

Could we do an RLA using ALICE with EMMA return arcs?

Suzie Sheehy S-Pod collaboration

Discussion points:

How much can we really study without longitudinal effects? (How) can we take into account the momentum compaction?



- Until 2013 had 6 recirculation passes in design
- Cheaper to have 2 FFAG beam lines
- Cheaper permanent magnet tech
- Discussion point: also only 1/3 as much linac needed

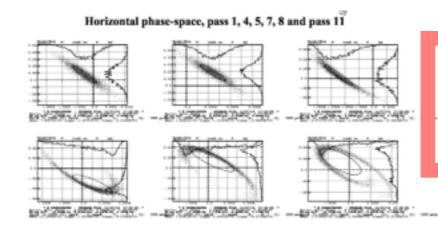
Vladim Ptitsyn eRHIC, status

Stephen Brooks eRHIC FFAG lattice

- Optimised design to reduce synchrotron radiation
- adiabatic matching concept
- Next pass will use doublet cell structure

Chuyu Liu
Orbit correction for eRHIC FFAG lattice

Challenging correction of multi-pass orbits

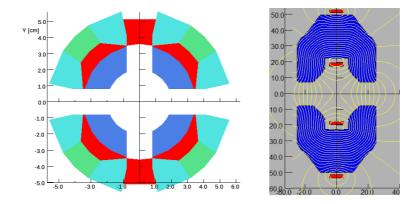

Oleg Tchoubar Synchrotron radiation in eRHIC FFAG

Extended calculation of synchrotron radiation Could be used as a diagnostic tool for eRHIC

Francois Meot End-to-end polarized bunch transport in eRHIC

Discussion:

Do we really understand what's happening here?


Vladimir Litvinenko Lattice studies

Merging and separating beams with harmonics Looks to be a challenging task!

Nicholaos Tsoupas eRHIC magnet cell options Material ordered to build prototypes by end of year

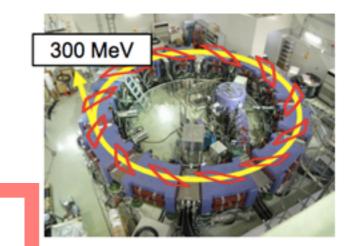
images blatantly nicked from the talk...

Discussion points:

Do we know long-term magnetisation issues for permanent magnets?

No.

Then we ate...


3. FFAGs for basic research

Yoshihiru Mori Intense monochromatic muon source

- 10^16 mu/sec required
- mu-ERIT 500 MeV/u, graphite target
- proposes a VFFAG, CW
- many technical challenges

Okita Hidefumi Preliminary design of a 300MeV spiral FFAG at Kyushu University

Discussion points:

How should we optimise & control tunes in scaling FFAGs with spiral angles, chamfers, field clamps etc

3. FFAGs for basic research

JB Lagrange Nu-STORM

Discussion points:

With real magnets, will the tune variation be very different?

With long baseline designs flux uncertainty becomes a big issue

How to set constraints on 'zero-chromatic' FFAG, if it's only a few-pass machine

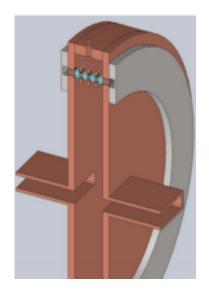
Jaroslaw Pasternak Design studies for PRISM

- 1-4MW proton beam power
- Rep rate 100 Hz 1 kHz
- Injection is challenging!

3. eRHIC & FFAGs for basic research- Discussion

BFRG?

Short talk on muon acceleration


- Need to limit emittance growth
- Need to reduce TOF for a given circumference
- Add sextuples to reduce TOF range

10:30 - 11:00 Coffee Break (Brookhaven Center, North Room) 11:00 - 12:30 eRHIC, FFAGs for Basic Research - Discussions - Chair: Scott Berg [T.Uesugi] Location: Brookhaven Center, South Room 11:00 Muon Acceleration 15' Speaker: Dr. J. Scott Berg (Brookhaven National Laboratory) Material: Slides Discussion: eRHIC design and FFAGs for basic research. 1h15' 11:15 Speaker: Dr. J. Scott Berg (Brookhaven National Laboratory) SCOT 12:30 - 13:30 Lunch Break (Cafeteria Berkner

Discussion points:

- · Would a VFFAG be better for muons as it could be isochronous?
- Long discussion on path length matching sections for eRHIC (seems to lose 'elegance' of FFAG arcs?)
- Matching is also for beta-functions
- Can there be focusing in the LINAC? (Not at present, why not? Synchrotron radiation? Space constraints?)
- Maybe should study FFAG focusing in LINAC section

4. Accelerator components - RF, magnet, diagnostics

David Newsham
Rapidly tunable RF cavity
FE material, analogous to ferrite tuning
Limited deltaF/F range (so need to operate with high harmonic)

Naoyuki Amemiya HTS magnets for scaling FFAG Overview of ongoing R&D project

Discussion points:

Current doesn't flow uniformly through wide 'tape' of HTS material, can the tape be cut/produced differently? (Not at present)

Tom Uesugi RF operation at KURRI FFAG

Discussion points:

Not sure if increase in intensity is really due to new RF programme Could there be a large phase slip accumulation?

5. Beam dynamics, simulations, codes

Suzie Sheehy
Status of experiments at the KURRI ADSR FFAG

Andreas Adelmann OPAL status

Discussion points:

Possibility of using OPAL to study eRHIC to compare to ELEGANT?

Sam Tygier Dynamic aperture of FFAGs

- Consistent definition of DA
- Some good case studies
- Implementation in PyZGOUBI

Then we ate...

6. Applications - high power, transmutation, ADSR

Michael Craddock

Isochronous radial-sector non-scaling FFAGs using different F and D field profiles

Discussion points:

Modelling of high energies in some of these lattices (like Graham Rees' "pumplet") become very dependent on fringe fields

Stephen Brooks

Vertical orbit-excursion FFAGs and 3D cyclotrons

my favourite line: "isochronous cyclotron disease"

Shinji Machida FFAGs for High Power Application

Challenged us to consider a new method of FFAG design

Discussion points:

Tuning coils & cyclotrons - not all are used
Will we get the 'knobs' required when we have limited budget?
Do we want so many variables for an 'easy to use' ie. medical machine?
Maybe we just need to work harder to understand our designs??

6. Applications - high power, transmutation, ADSR

Nikolaos Simos BLAIRR

"Brookhaven linear irradiation test facility"

Discussion points:

Might be an opportunity for a high power FFAG to I GeV

Carol Johnstone
High Power FFAGs using SCRF

Discussion points:

Influence of harmonic number on serpentine channel acceleration requirements

Malek Haj Tahar

High power ring design studies for sub-critical reactor operation


- Energy choice of accelerator system crucial
- Presented a non-thorium solution
- ZGOUBI & OPAL ring simulations

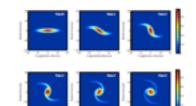

then we toured...

Then we ate... again

7. Medical FFAGs & high power e-beams

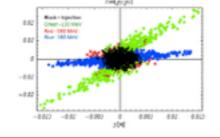
David Bruton

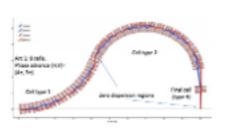
Low Energy FFAGs for isotope production


- design currently crosses integer
- Considered internal/external target
- Need to consider extraction mechanism

Antoine Cerfron

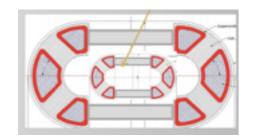
Space Charge in Fixed-Field Rings




Dejan Trbojevic FFAG gantry design

- Fast energy variation could allow organ tracking during treatment
- Challenges exist in scanning system

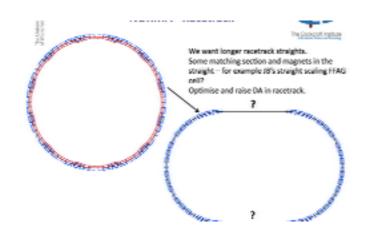
Jaroslaw Pasternak
Non-Linear Non-Scaling FFAG gantry design



Discussion points:

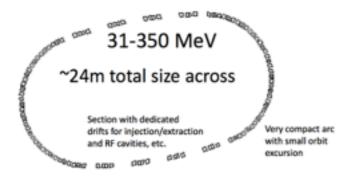
Does the treatment at each gantry 'setting' need to cover the full energy range or not?

7. Medical FFAGs & high power e-beams


Carol Johnstone
Ion therapy FFAGs and imaging

Francois Meot

Medico-economical study of a FFAG based, multi-port simultaneous beam delivery hadrontherapy facility



James Garland NORMA A NORmal conducting medical Accelerator

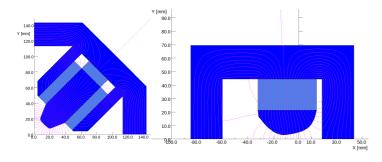
8. Injection/Extraction

Jaroslaw Pasternak

- Injection/extraction issues for pulsed machines
- Showed a number of designs including an eggshaped one to allow inj/ext areas

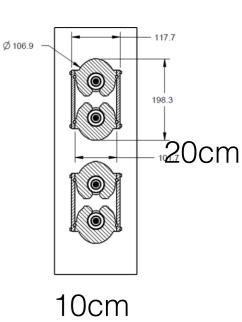
Carol Johnstone

- Injection/extraction issues for CW machines
- Calculated acceleration rates & orbit separation


Discussion points:

Experience from operating facilities e.g. PSI will be crucial to realise CW FFAG Need to consider influence of harmonic number on serpentine channel & voltage requirement

(9. Cornell-BNL ERL FFAG)


10. New Proposal & Future

Wuzheng Meng

Ramesh Gupta & Mike Anarella HTS magnets for eRHIC

Interesting round design which should be cheaper Ends are expensive = no ends. Engaging commercial companies as much as possible

Discussion points:

Small NC magnets look nice, in terms of cost the smaller the better... but are they actually harder to build?

For the round design there may be real end field effects, needs to be studied Cost is the main issue to realise magnets for eRHIC, not technical challenge

10. New Proposal & Future

Bruce Dunham Shielding & radiation protection

Don't always need to go for 'massive and passive' shielding (though easiest if you can afford it)
Beginning calculations for the eRHIC FFAG option

Discussion points:

Uncertainty over beam loss rates for FFAG/ERL?

(Might even be easier because the energy acceptance is so large.)

Shinji Machida Small scale FFAG test facility Idea for flexible "versa-tron?" facility on end of FETS facility Straight sections are required to realise some of these machines

Reduce dispersion in straights for cavities

We should use 'chromatic' or 'zero-chromatic' instead of 'scaling' or 'non-scaling'

Summary of the summary...

- FFAGs continue to make a lot of progress
- New applications and uses emerging (ERL, postacceleration AMS, BLAIRR etc...)
- There is still some work to go, particularly on high intensity aspects, but we are making progress
- Designs are 'maturing' in the design strategy, consideration of lessons learned from various projects etc..
- Many engineering challenges, but just as many novel solutions (helical coils, halbach magnets etc...)

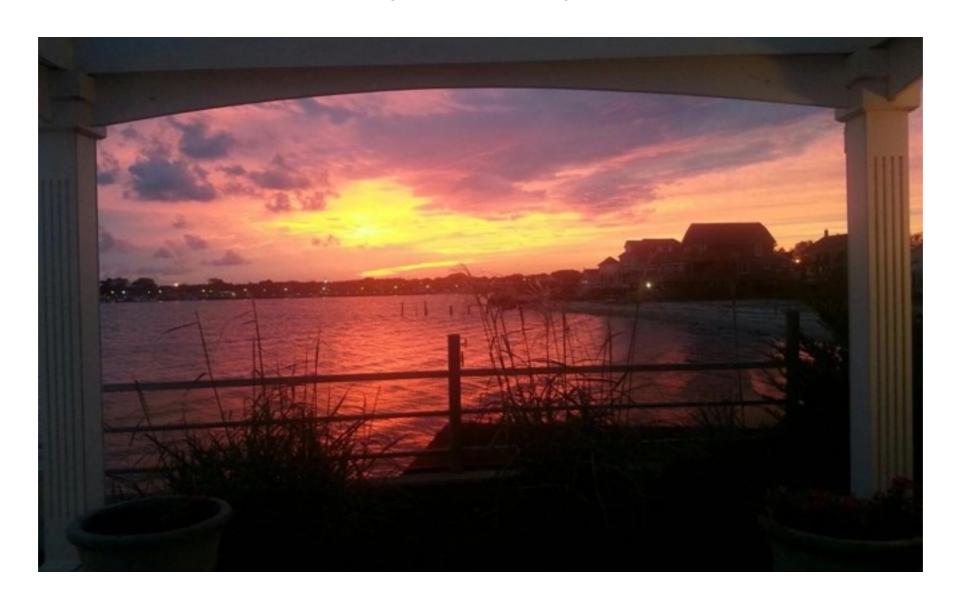
SPACE-CHARGE 2015

TRINITY COLLEGE OXFORD

MARCH 23RD-27TH

SPACE CHARGE EFFECTS AND BEAM LOSS MITIGATION IN HIGH INTENSITY MACHINES
THEORETICAL DEVELOPMENTS IN SPACE CHARGE

-08,80


SIMULATION METHODS AND CODES

SPACE CHARGE ISSUES IN FUTURE PROTON AND ION FACILITIES

http://www.cockcroft.ac.uk/events/SpaceCharge15

FFAG'14

Thankyou to everyone at BNL for a great workshop See you next year!

